Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Differ. 2011 May;18(5):817-28. doi: 10.1038/cdd.2010.149. Epub 2010 Nov 26.

HDLs inhibit endoplasmic reticulum stress and autophagic response induced by oxidized LDLs.

Author information

1
INSERM U-858, Department of Vascular Biology, IFR-150, CHU Rangueil, Toulouse, France.

Abstract

The apoptotic effect of oxidized LDLs (oxLDLs) is mediated through a complex sequence of signaling events involving a deregulation of the cytosolic Ca(2+) homeostasis. OxLDLs also trigger ER stress that may lead to cellular dysfunction and apoptosis, through the activation of the IRE1α/c-Jun N-terminal kinase pathway. Moreover, ER stress and oxidized lipids have been shown to trigger autophagy. The antiatherogenic high-density lipoproteins (HDLs) display protective effects against oxLDLs toxicity. To more deeply investigate the mechanisms mediating the protective effects of HDLs, we examined whether ER stress and autophagy were implicated in oxLDLs-induced apoptosis and whether HDLs prevented these stress processes. We report that, in human endothelial cells, HDLs prevent the oxLDL-induced activation of the ER stress sensors IRE1α, eIF2α and ATF6 and subsequent activation of the proapoptotic mediators JNK and CHOP. OxLDLs also trigger the activation of autophagy, as assessed by LC3 processing and Beclin-1 expression. The autophagic process is independent of the proapoptotic arms of ER stress, but Beclin-1 contributes to PS exposure and subsequent phagocytosis of oxLDLs exposed cells. Induction of autophagy and PS exposure by oxLDLs is prevented by HDLs. Finally, the cytosolic Ca(2+) deregulation triggered by oxLDLs is a common signaling pathway that mediates ER stress-induced cell death and autophagy, all these events being blocked by HDLs.

PMID:
21113143
PMCID:
PMC3131925
DOI:
10.1038/cdd.2010.149
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center