Send to

Choose Destination
See comment in PubMed Commons below
Cell Signal. 2011 Mar;23(3):586-93. doi: 10.1016/j.cellsig.2010.11.011. Epub 2010 Nov 25.

The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k.

Author information

  • 1Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, CO 80206, USA.


Protein translation is an essential but energetically expensive process, which is carefully regulated in accordance to the cellular nutritional and energy status. Eukaryotic elongation factor 2 (eEF2) is a central regulation point since it mediates ribosomal translocation and can be inhibited by phosphorylation at Thr56. TRPM7 is the unique fusion of an ion channel with a functional Ser/Thr-kinase. While TRPM7's channel function has been implicated in regulating vertebrate Mg(2+) uptake required for cell growth, the function of its kinase domain remains unclear. Here, we show that under conditions where cell growth is limited by Mg(2+) availability, TRPM7 via its kinase mediates enhanced Thr56 phosphorylation of eEF2. TRPM7-kinase does not appear to directly phosphorylate eEF2, but rather to influence the amount of eEF2's cognate kinase eEF2-k, involving its phosphorylation at Ser77. These findings suggest that TRPM7's structural duality ensures ideal positioning of its kinase in close proximity to channel-mediated Mg(2+) uptake, allowing for the adjustment of protein translational rates to the availability of Mg(2+).

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center