Send to

Choose Destination
See comment in PubMed Commons below
Nanotechnology. 2010 Dec 17;21(50):505704. doi: 10.1088/0957-4484/21/50/505704. Epub 2010 Nov 22.

Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors.

Author information

Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA.


In this study, we report on the formation of a single-crystalline Ni(2)Ge/Ge/Ni(2)Ge nanowire heterostructure and its field effect characteristics by controlled reaction between a supercritical fluid-liquid-solid (SFLS) synthesized Ge nanowire and Ni metal contacts. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal a wide temperature range to convert the Ge nanowire to single-crystalline Ni(2)Ge by a thermal diffusion process. The maximum current density of the fully germanide Ni(2)Ge nanowires exceeds 3.5 × 10(7) A cm(-2), and the resistivity is about 88 μΩ cm. The in situ reaction examined by TEM shows atomically sharp interfaces for the Ni(2)Ge/Ge/Ni(2)Ge heterostructure. The interface epitaxial relationships are determined to be [Formula: see text] and [Formula: see text]. Back-gate field effect transistors (FETs) were also fabricated using this low resistivity Ni(2)Ge as source/drain contacts. Electrical measurements show a good p-type FET behavior with an on/off ratio over 10(3) and a one order of magnitude improvement in hole mobility from that of SFLS-synthesized Ge nanowire.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center