Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2011 Mar 1;55(1):411-9. doi: 10.1016/j.neuroimage.2010.11.033. Epub 2010 Nov 21.

Processing social aspects of human gaze: a combined fMRI-DTI study.

Author information

1
Laboratory for Behavioral Neurology & Imaging of Cognition, Department of Neuroscience & Clinic of Neurology, Medical School, University of Geneva, Switzerland. Thomas.Ethofer@med.uni-tuebingen.de

Abstract

Human gaze is a critical social cue that can reveal intentions and dispositions of others. The right posterior superior temporal sulcus (pSTS) is thought to be critically involved in processing eye gaze information. We combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) to identify direct neural connections of right pSTS and to determine how these connections are modulated by the social significance of perceived gaze shifts. Participants saw faces with direct or averted gaze during event-related fMRI. Half of these faces remained static, and half displayed a dynamic gaze shift either towards or away from the subject. Social attention (dynamic gaze shifts towards the observer) not only increased activity in right pSTS, but also its functional connectivity with the right anterior insula (aIns) and right fusiform gyrus (FG). However, direct fiber connections from pSTS were demonstrated by DTI for the right aIns, but not the right FG. Moreover, the right FG responded to eye motion irrespective of direction and social significance; whereas the right aIns was selectively sensitive to social significance (i.e. gaze shifts towards the observer), but not generally to eye motion. We conclude that the social aspects of mutual gaze contact are processed by direct fiber pathways between right pSTS and right aIns; whereas increased connectivity with FG could reflect an enhanced perceptual analysis of changing facial features in dynamic gaze conditions and involves indirect fiber pathways with pSTS, perhaps via motion-selective regions in middle temporal (MT) gyrus that exhibited strong white-matter connections with both pSTS and FG and could thus provide inputs to these two areas.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center