Format

Send to

Choose Destination
Am J Infect Control. 2011 May;39(4):321-8. doi: 10.1016/j.ajic.2010.06.011. Epub 2010 Nov 20.

Forced-air warming blowers: An evaluation of filtration adequacy and airborne contamination emissions in the operating room.

Author information

1
Augustine Biomedical and Design, Eden Prairie, MN, USA. albre116@umn.edu

Abstract

BACKGROUND:

Forced-air warming (FAW) is widely used to prevent hypothermia during surgical procedures. The airflow from these blowers is often vented near the operative site and should be free of contaminants to minimize the risk of surgical site infection. Popular FAW blowers contain a 0.2-μm rated intake filter to reduce these risks. However, there is little evidence that the efficiency of the intake filter is adequate to prevent airborne contamination emissions or protect the internal air path from microbial contamination buildup.

METHODS:

Five new intake filters were obtained directly from the manufacturer (Bair Hugger 505, model 200708D; Arizant Healthcare, Eden Prairie, MN), and 5 model 200708C filters currently in hospital use were removed from FAW devices. The retention efficiency of these filters was assessed using a monodisperse sodium chloride aerosol. In the same hospitals, internal air path surface swabs and hose outlet particle counts were performed on 52 forced-air warming devices (all with the model 200708C filter) to assess internal microbial buildup and airborne contamination emissions.

RESULTS:

Intake filter retention efficiency at 0.2 μm was 93.8% for the 200708C filter and 61.3% at for the 200708D filter. The 200708D filter obtained directly from the manufacturer has a thinner filtration media than the 200708C filter in current hospital use, suggesting that the observed differences in retention efficiency were due to design changes. Fifty-eight percent of the FAW blowers evaluated were internally generating and emitting airborne contaminants, with microorganisms detected on the internal air path surfaces of 92.3% of these blowers. Isolates of Staphylococcus aureus, coagulase-negative Staphylococcus, and methicillin-resistant S aureus were detected in 13.5%, 3.9%, and 1.9% of FAW blowers, respectively.

CONCLUSION:

The design of popular FAW devices using the 200708C filter was found to be inadequate for preventing the internal buildup and emission of microbial contaminants into the operating room. Substandard intake filtration allowed airborne contaminants (both viable and nonviable) to penetrate the intake filter and reversibly attach to the internal surfaces within the FAW blowers. The reintroduction of these contaminants into the FAW blower air stream was detected and could contribute to the risk of cross-infection. Given the deficiencies identified with the 200708C intake filter, the introduction of a new filter (model 200708D) with substantially lower retention efficiency is of concern.

PMID:
21095041
DOI:
10.1016/j.ajic.2010.06.011
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center