Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2011 Feb 21;11(4):717-22. doi: 10.1039/c0lc00277a. Epub 2010 Nov 19.

Controlled mechanical fracture for fabricating microchannels with various size gradients.

Author information

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea.


We present a simple method to generate cracks with controllable size (depth and width) and space gradients using deep surface oxidation and anisotropic mechanical stretching. To generate a thick oxidation layer (<∼7 µm), a polydimethylsiloxane (PDMS) slab of uniform or varying thickness was exposed to UV/ozone for less than 30 min in the UV-C wavelength including wavelengths of 185 and 254 nm. Subsequently, the PDMS slab was wrapped on a cylindrical support (radius: 11 mm) to apply a uniform bending strain (<21%), resulting in equally separated, anisotropic cracks over a large area. By modulating initial oxidation depth and applied bending stress, cracks of varying sizes and spaces were formed on a single PDMS slab. Furthermore, multiple, sequential cracks were generated by increasing the strain in a step-wise fashion and multi-directional cracks by applying the strain with an orientation angle. Finally, size and space-varying cracks were formed between two adjacent large channels in an interconnected format by selective masking and irreversible bonding.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center