Format

Send to

Choose Destination
BMC Microbiol. 2010 Nov 17;10:294. doi: 10.1186/1471-2180-10-294.

Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis.

Author information

1
Center for Biofilm Engineering and Department of Chemical and Biological Engineering, PO Box 173980, Montana State University-Bozeman, Bozeman, Montana 59717-3980, USA.

Abstract

BACKGROUND:

Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared rankings for a priori identified physiological marker genes between the biofilm and published data sets.

RESULTS:

Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h(-1).

CONCLUSIONS:

Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due to low metabolic activity.

PMID:
21083928
PMCID:
PMC2998477
DOI:
10.1186/1471-2180-10-294
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center