Synthesis and structural characterization of group 6 transition metal complexes with terminal fluoromethylidyne (CF) ligands; a DFT/NBO/NRT comparison of bonding characteristics of terminal NO, CF and CH ligands

Dalton Trans. 2011 Jan 7;40(1):47-55. doi: 10.1039/c0dt01006e. Epub 2010 Nov 17.

Abstract

A family of group 6 transition metal complexes M(C(5)R(5))(CO)(2)(CF) [M = Cr, Mo, W; R = H, Me] with terminal fluoromethylidyne ligands have been synthesized through the reduction of the corresponding trifluoromethyl precursors with potassium graphite or magnesium graphite. They have been characterized spectroscopically and in some cases crystallographically, although the structures show disorder between the CO and CF ligands. The M[triple bond]CF subunit reacts as a triple bond to form cluster complexes containing μ(3)-CF ligands on reaction with Co(2)(CO)(8). Computational (DFT/NBO/NRT) studies on M(C(5)H(5))(CO)(2)(CF) [M = Cr, Mo, W] and the corresponding cationic fragments M(CO)(2)(XY)(+) illustrate significant differences in the metal-ligand bonding between CF and its isoelectronic analogue NO, as well as with its hydrocarbon analogue CH.