Format

Send to

Choose Destination
J Clin Lipidol. 2010 Sep-Oct;4(5):382-8. doi: 10.1016/j.jacl.2010.08.007.

Myeloperoxidase, inflammation, and dysfunctional high-density lipoprotein.

Author information

1
Department of Cell Biology, Box NC10, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA. smithj4@ccf.org

Abstract

High-density lipoprotein (HDL) has many protective activities against atherosclerosis, including its role in reverse cholesterol transport, and its antioxidant, anti-inflammatory, and endothelial cell maintenance functions. However, all HDL is not functionally equivalent. The authors of recent studies have shown that infection, inflammation, diabetes, and coronary artery disease are associated with dysfunctional HDL. HDL can lose its protective activities through a variety of mechanisms, including, but not limited to, altered protein composition, oxidative protein modification mediated by the enzyme myeloperoxidase, and lipid modification. Studies in which the authors used bacterial endotoxin in humans and mice have directly demonstrated changes in HDL composition, loss of HDL's cholesterol acceptor activity, and decreased hepatic processing and secretion of cholesterol. Although a routine clinical assay for dysfunctional HDL is not currently available, the development of such an assay would be beneficial for a better understanding of the role that dysfunctional HDL plays as a risk factor for coronary artery disease and for the determination of how various drug therapies effect HDL functionality.

KEYWORDS:

Reverse cholesterol transport; apolipoprotein A-I; cholesterol efflux; high density lipoprotein; inflammation; lipopolysaccharide

PMID:
21076633
PMCID:
PMC2976566
DOI:
10.1016/j.jacl.2010.08.007
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center