(A) Second order statistical parameters maps showing only the significant differences of heat (55°C) and tactile (vibrissae) stimulation induced brain activation between α2δ3+/+ and α2δ3−/− mutant mice. Activation was assessed by BOLD-fMRI. The three planes correspond to the white lines shown in . The green/blue scale indicates increased peak activation (55°C) in α2δ3+/+ control mice compared to α2δ3−/− mutant mice. The yellow/red scale indicates increased activation in α2δ3−/− mutant mice compared to α2δ3+/+ control mice. Images depict significant differences of second order group statistics corrected for multiple comparisons over all mice tested (n = 20 for α2δ3+/+ mice, n = 18 for α2δ3−/− mice). Arrows point to activated regions; note that for heat stimulation the S1/S2 somato-sensory cortex, the cingulate (Cg) cortex and the motor (M) cortex show significantly higher activity in α2δ3+/+ controls. In α2δ3−/− mice, heat stimulation leads to significantly higher activity auditory cortex (AC), the visual cortex (VC), and the olfactory tubercle (OT), as well as the amygdala (Amd) and the hypothalamus (HT). For tactile stimulation, only one small region in the S1 somatosensory cortex, ipsilateral to the side of stimulation (right), showed significantly higher activity in α2δ3+/+ controls, whereas α2δ3−/− mice again exhibited increased activation of the VC, AC, and OT, in addition to the caudate putamen (Cpu), S1 and S2 regions of the somato-sensory cortex, and the superior colliculus (SC). (B,C) % BOLD changes in the auditory cortex (AC), olfactory tubercle (OT), and visual cortex (VC) in control and α2 δ3 −/− mice following (B) heat (55°C) and (C) tactile vibrissal stimulation. Data is presented as mean values ± sem. *p < 0.05; **p < 0.01 (Student’s t-test).