Send to

Choose Destination
Neuroimage. 2011 May 1;56(1):27-34. doi: 10.1016/j.neuroimage.2010.11.022. Epub 2010 Nov 10.

Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow.

Author information

Division of Genetics and Development, Toronto Western Research Institute, Canada.


The compactness of myelin allows for efficient insulation defining rapid propagation of action potentials, but also raises questions about how cytoplasmic access to its membranes is achieved, which is critical for physiological activity. Understanding the organization of cytoplasmic ('water') spaces of myelin is also important for diffusion MRI studies of CNS white matter. Using longitudinal slices of mature rat spinal cord, we monitored the diffusion of the water-soluble fluorescent dye Lucifer Yellow injected into individual oligodendrocytes or internodal myelin. We show that living myelin sheaths on CNS axons are fenestrated by a network of diffusionally interconnected cytoplasmic 'pockets' (1.9 ± 0.2 pockets per 10μm sheath length, n=58) that included Schmidt-Lanterman clefts (SLCs) and numerous smaller compartments. 3-D reconstructions of these cytoplasmic networks show that the outer cytoplasmic layer of CNS myelin is cylindrically 'encuffing', which differs from EM studies using fixed tissue. SLCs were found in different 'open states' and remained stable within a 1-2hour observation period. Unlike the peripheral nervous system, where similarly small (<500Da) molecules diffuse along the whole myelin segment within a few minutes, in mature CNS this takes more than one hour. The slower cytoplasmic diffusion in CNS myelin possibly contributes to its known vulnerability to injury and limited capacity for repair. Our findings point to an elaborate cytoplasmic access to compact CNS myelin. These results could be of relevance to MRI studies of CNS white matter and to CNS repair/regeneration strategies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center