Send to

Choose Destination
Photochem Photobiol. 2011 Jan-Feb;87(1):137-42. doi: 10.1111/j.1751-1097.2010.00823.x. Epub 2010 Nov 12.

Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms.

Author information

Botany Department, Faculty of Science, Assiut University, Assiut, Egypt.


This work was devoted to separate acetate role in creating anaerobiosis from that of sulfur deprivation. Chlamydomonas reinhardtii grown in TAP (Tris-acetate-phosphate) medium was resuspended in sulfur-replete or -deprived medium in sealed or nonsealed cultures. Sulfur deprivation was substantial for starch accumulation and hydrogen evolution; however, acetate induced anaerobiosis in the presence or absence of sulfur in only sealed cultures. In nonsealed cultures, Chlamydomonas did not lose its photosynthetic activity; however, it was arrested in anoxia with no photosynthetic activity as long as the culture was sealed. The sealed cultures resumed photosynthesis upon unsealing overnight unless the cells died by anoxia at late stage of the experiment. These results indicate that the enhanced oxygen consumption for the enormous acetate respiration and inhibition of the external oxygen supply in sealed cultures of Chlamydomonas are the main reasons for the steady anaerobic conditions. Although acetate was substantial for creating anaerobiosis in Chlamydomonas, sulfur deprivation alone could create anaerobiosis in Spirulina platensis grown autotrophically. Hydrogen evolution and glycogen accumulation were induced under such conditions. Severely reduced phycocyanin, chlorophyll and photosynthesis, while respiration had increased, induced anaerobiosis in Spirulina. This study reports for the first time anaerobiosis under autotrophic conditions in a cyanobacterium.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center