Format

Send to

Choose Destination
Nature. 2010 Nov 11;468(7321):223-31. doi: 10.1038/nature09612.

Regulation of synaptic connectivity by glia.

Author information

1
Cell Biology Department, Box 3709, Duke University Medical Center, Durham, North Carolina 27710, USA. c.eroglu@cellbio.duke.edu

Abstract

The human brain contains more than 100 trillion (10(14)) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.

PMID:
21068831
PMCID:
PMC4431554
DOI:
10.1038/nature09612
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center