One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation

J Colloid Interface Sci. 2011 Feb 1;354(1):131-8. doi: 10.1016/j.jcis.2010.10.036. Epub 2010 Oct 21.

Abstract

PVP-protected Ag(core)/Au(shell) bimetallic nanoparticles of enough small size, i.e., 1.4nm in diameter were synthesized in one-vessel using simultaneous reduction of the corresponding ions with rapid injection of NaBH(4), and characterized by HR-TEM. The Ag(core)/Au(shell) bimetallic nanoparticles show a high and durable catalytic activity for the aerobic glucose oxidation, and the catalyst can be stably kept for more than 2months under ambient conditions. The highest activity (16,890mol-glucoseh(-1)mol-metal(-1)) was observed for the bimetallic nanoparticles with Ag/Au atomic ratio of 2/8, the TOF value of which is several times higher than that of Au nanoparticles with nearly the same particle size. The higher catalytic activity of the prepared bimetallic nanoparticles than the usual Au nanoparticles can be ascribed to: (1) the small average diameter, usually less than 2.0nm, and (2) the electronic charge transfer effect from adjacent Ag atoms and protecting PVP to Au active sites. In contrast, the Ag-Au alloy nanoparticles, synthesized by dropwise addition of NaBH(4) into the starting solution and having the large mean particle size, showed a low catalytic activity.