Format

Send to

Choose Destination
Mol Microbiol. 2010 Nov;78(4):964-79. doi: 10.1111/j.1365-2958.2010.07384.x. Epub 2010 Sep 27.

The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development.

Author information

1
Institut für Mikrobiologie & Genetik, Georg-August-Universität, D-37077 Göttingen, Germany.

Abstract

The COP9 signalosome complex (CSN) is a crucial regulator of ubiquitin ligases. Defects in CSN result in embryonic impairment and death in higher eukaryotes, whereas the filamentous fungus Aspergillus nidulans survives without CSN, but is unable to complete sexual development. We investigated overall impact of CSN activity on A. nidulans cells by combined transcriptome, proteome and metabolome analysis. Absence of csn5/csnE affects transcription of at least 15% of genes during development, including numerous oxidoreductases. csnE deletion leads to changes in the fungal proteome indicating impaired redox regulation and hypersensitivity to oxidative stress. CSN promotes the formation of asexual spores by regulating developmental hormones produced by PpoA and PpoC dioxygenases. We identify more than 100 metabolites, including orsellinic acid derivatives, accumulating preferentially in the csnE mutant. We also show that CSN is required to activate glucanases and other cell wall recycling enzymes during development. These findings suggest a dual role for CSN during development: it is required early for protection against oxidative stress and hormone regulation and is later essential for control of the secondary metabolism and cell wall rearrangement.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center