Send to

Choose Destination
Anal Biochem. 2011 Feb 15;409(2):273-83. doi: 10.1016/j.ab.2010.10.033. Epub 2010 Nov 2.

Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions.

Author information

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.


Fluorescence assays employing semisynthetic or commercial dansyl-polymyxin B have been widely employed to assess the affinity of polycations, including polymyxins, for bacterial cells and lipopolysaccharide (LPS). The five primary γ-amines on diaminobutyric acid residues of polymyxin B are potentially derivatized with dansyl-chloride. Mass spectrometric analysis of the commercial product revealed a complex mixture of di- or tetra-dansyl-substituted polymyxin B. We synthesized a mono-substituted fluorescent derivative, dansyl[Lys]¹polymyxin B₃. The affinity of polymyxin for purified gram-negative LPS and whole bacterial cells was investigated. The affinity of dansyl[Lys]¹polymyxin B₃ for LPS was comparable to polymyxin B and colistin, and considerably greater (K(d)<1 μM) than for whole cells (K(d)∼6-12μM). Isothermal titration calorimetric studies demonstrated exothermic enthalpically driven binding between both polymyxin B and dansyl[Lys]¹polymyxin B₃ to LPS, attributed to electrostatic interactions. The hydrophobic dansyl moiety imparted a greater entropic contribution to the dansyl[Lys]¹polymyxin B₃-LPS reaction. Molecular modeling revealed a loss of electrostatic contact within the dansyl[Lys]¹polymyxin B₃-LPS complex due to steric hindrance from the dansyl[Lys]¹ fluorophore; this corresponded with diminished antibacterial activity (MIC≥16μg/mL). Dansyl[Lys]¹polymyxin B₃ may prove useful as a screening tool for drug development.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center