Format

Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2010 Dec 6;49(23):10977-83. doi: 10.1021/ic101420c. Epub 2010 Nov 4.

High conductivity in hydrothermally grown AgCuO(2) single crystals verified using focused-ion-beam-deposited nanocontacts.

Author information

  • 1Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain. davidmunozrojas@gmail.com

Abstract

The silver-copper mixed oxide AgCuO(2) (also formulated as Ag(2)Cu(2)O(4)) possesses a peculiar electronic structure in which both Ag and Cu are partially oxidized, with the charge being delocalized among the three elements in the oxide. Accordingly, a quasi-metallic behavior should be expected for this oxide, and indeed bulk transport measurements show conductivity values that are orders of magnitude higher than for other members of this novel oxide family. The presence of silver makes thermal sintering an inadequate method to evaluate true conductivity, and thus such measurements were performed on low density pellets, giving an underestimated value for the conductivity. In the present work we present a new synthetic route for AgCuO(2) based on mild hydrothermal reactions that has yielded unprecedented large AgCuO(2) single-crystals well over 1 μm in size using temperatures as low as 88 °C. We have used a dual beam instrument to apply nanocontacts to those crystals, allowing the in situ measurement of transport properties of AgCuO(2) single crystals. The results show a linear relationship between applied current and measured voltage. The conductivity values obtained are 50 to 300 times higher than those obtained for bulk low density AgCuO(2) pellets, thus confirming the high conductivity of this oxide and therefore supporting the delocalized charge observed by spectroscopic techniques.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk