Format

Send to

Choose Destination
Nature. 1990 Jan 4;343(6253):79-82.

Go protein as signal transducer in the pertussis toxin-sensitive phosphatidylinositol pathway.

Author information

1
Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029.

Abstract

Receptors stimulating phospholipase C do so through heterotrimeric GTP-binding proteins to produce two second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol. In spite of the detailed understanding of phospholipase C structure and phosphatidyl inositol signalling, the identity of the GTP-binding protein involved is so far unknown. To address this issue, we have used the Xenopus oocyte in which muscarinic receptors couple to phospholipase C through a pertussis toxin-sensitive GTP-binding protein. In this cell, InsP3 mobilizes intracellular Ca2+ to evoke a Cl- current. The magnitude of this Cl- current is proportional to the amount of InsP3 in the cell, and therefore can be used as an assay for InsP3 production. We report here that the activated alpha-subunit of the GTP-binding protein GO, when directly injected into oocytes, evokes a Cl- current by mobilizing Ca2+ from intracellular InsP3-sensitive stores. We also show that holo-GO, when injected into oocytes, can specifically enhance the muscarinic receptor-stimulated Cl- current. These data indicate that GO can serve as the signal transducer of the receptor-regulated phospholipase C in Xenopus oocytes.

PMID:
2104959
DOI:
10.1038/343079a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center