Send to

Choose Destination
Carbohydr Res. 2010 Dec 10;345(18):2583-95. doi: 10.1016/j.carres.2010.10.002. Epub 2010 Nov 1.

Pectin methylesterase and its proteinaceous inhibitor: a review.

Author information

Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, PB 2457, B-3001 Leuven, Belgium.


Pectin methylesterase (PME) catalyses the demethoxylation of pectin, a major plant cell wall polysaccharide. Through modification of the number and distribution of methyl-esters on the pectin backbone, PME affects the susceptibility of pectin towards subsequent (non-) enzymatic conversion reactions (e.g., pectin depolymerisation) and gel formation, and, hence, its functionality in both plant cell wall and pectin-containing food products. The enzyme plays a key role in vegetative and reproductive plant development in addition to plant-pathogen interactions. In addition, PME action can impact favourably or deleteriously on the structural quality of plant-derived food products. Consequently, PME and also the proteinaceous PME inhibitor (PMEI) found in several plant species and specifically inhibiting plant PMEs are highly relevant for plant biologists as well as for food technologists and are intensively studied in both fields. This review paper provides a structured, comprehensive overview of the knowledge accumulated over the years with regard to PME and PMEI. Attention is paid to both well-established and novel data concerning (i) their occurrence, polymorphism and physicochemical properties, (ii) primary and three-dimensional protein structures, (iii) catalytic and inhibitory activities, (iv) physiological roles in vivo and (v) relevance of (endogenous and exogenous) enzyme and inhibitor in the (food) industry. Remaining research challenges are indicated.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center