Send to

Choose Destination
Clin Mol Allergy. 2010 Nov 3;8:15. doi: 10.1186/1476-7961-8-15.

Aspergillus fumigatus allergen expression is coordinately regulated in response to hydrogen peroxide and cyclic AMP.

Author information

School of Translational Medicine, Faculty of Medicine and Human Sciences, Education and Research Centre (2nd floor), The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, M23 9LT, UK.



A. fumigatus has been associated with a wide spectrum of allergic disorders such as ABPA or SAFS. It is poorly understood what allergens in particular are being expressed during fungal invasion and which are responsible for stimulation of immune responses. Study of the dynamics of allergen production by fungi may lead to insights into how allergens are presented to the immune system.


Expression of 17 A. fumigatus allergen genes was examined in response to various culture conditions and stimuli as well as in the presence of macrophages in order to mimic conditions encountered in the lung.


Expression of 14/17 allergen genes was strongly induced by oxidative stress caused by hydrogen peroxide (Asp f 1, -2, -4, -5, -6, -7, -8, -10, -13, -17 and -18, all >10-fold and Asp f 11, -12, and -22, 5-10-fold) and 16/17 allergen genes were repressed in the presence of cAMP. The 4 protease allergen genes (Asp f -5, -10, -13 and -18) were expressed at very low levels compared to the comparator (β-tubulin) under all other conditions examined. Mild heat shock, anoxia, lipid and presence of macrophages did not result in coordinated changes in allergen gene expression. Growth on lipid as sole carbon source contributed to the moderate induction of most of the allergen genes. Heat shock (37°C > 42°C) caused moderate repression in 11/17 genes (Asp f 1, -2, -4, -5, -6, -9, -10, -13, -17, -18 and -23) (2- to 9-fold), which was mostly evident for Asp f 1 and -9 (~9-fold). Anaerobic stress led to moderate induction of 13/17 genes (1.1 to 4-fold) with one, Asp f 8 induced over 10-fold when grown under mineral oil. Complex changes were seen in gene expression during co-culture of A. fumigatus with macrophages.


Remarkable coordination of allergen gene expression in response to a specific condition (oxidative stress or the presence of cAMP) has been observed, implying that a single biological stimulus may play a role in allergen gene regulation. Interdiction of a putative allergen expression induction signalling pathway might provide a novel therapy for treatment of fungal allergy.

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center