Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Genet. 2010;44:91-112. doi: 10.1146/annurev-genet-102209-163600.

Evolution of sex chromosomes in insects.

Author information

1
Department of Integrative Biology, University of California Berkeley, Berkeley, California 94720, USA. vera.kaiser@berkeley.edu

Abstract

Sex chromosomes have many unusual features relative to autosomes. Y (or W) chromosomes lack genetic recombination, are male- (female-) limited, and show an abundance of genetically inert heterochromatic DNA but contain few functional genes. X (or Z) chromosomes also show sex-biased transmission (i.e., X chromosomes show female-biased and Z-chromosomes show male-biased inheritance) and are hemizygous in the heterogametic sex. Their unusual ploidy level and pattern of inheritance imply that sex chromosomes play a unique role in many biological processes and phenomena, including sex determination, epigenetic chromosome-wide regulation of gene expression, the distribution of genes in the genome, genomic conflict, local adaptation, and speciation. The vast diversity of sex chromosome systems in insects--ranging from the classical male heterogametic XY system in Drosophila to ZW systems in Lepidoptera or mobile genes determining sex as found in house flies--implies that insects can serve as unique model systems to study various functional and evolutionary aspects of these different processes.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center