Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

J Opt Soc Am A Opt Image Sci Vis. 2010 Nov 1;27(11):A265-77. doi: 10.1364/JOSAA.27.00A265.

Abstract

We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25 deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10 μm rms, or 0.03 deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Automation
  • Female
  • Humans
  • Lasers*
  • Male
  • Middle Aged
  • Motion*
  • Ophthalmoscopes*
  • Optical Phenomena*
  • Retina / physiology*
  • Software
  • Systems Integration*
  • User-Computer Interface