Send to

Choose Destination
Hepatology. 2010 Nov;52(5):1769-82. doi: 10.1002/hep.23894.

The fractalkine receptor CX₃CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes.

Author information

Department of Medicine III, University Hospital Aachen, Aachen, Germany.


Chemokines modulate inflammatory responses that are prerequisites for organ fibrosis upon liver injury. Monocyte-derived hepatic macrophages are critical for the development, maintenance, and resolution of hepatic fibrosis. The specific role of monocyte-associated chemokine (C-X3-C motif) receptor 1 (CX₃CR1) and its cognate ligand fractalkine [chemokine (C-X3-C motif) ligand 1)] in liver inflammation and fibrosis is currently unknown. We examined 169 patients with chronic liver diseases and 84 healthy controls; we found that CX₃CL1 is significantly up-regulated in the circulation upon disease progression, whereas CX₃CR1 is down-regulated intrahepatically in patients with advanced liver fibrosis or cirrhosis. To analyze the functional relevance of this pathway, two models of experimental liver fibrosis were applied to wild-type (WT) and CX₃CR1-deficient mice. Fractalkine expression was induced upon liver injury in mice, primarily in hepatocytes and hepatic stellate cells. CX₃CR1(-/-) animals developed greater hepatic fibrosis than WT animals with carbon tetrachloride-induced and bile duct ligation-induced fibrosis. CX₃CR1(-/-) mice displayed significantly increased numbers of monocyte-derived macrophages within the injured liver. Chimeric animals that underwent bone marrow transplantation revealed that CX₃CR1 restricts hepatic fibrosis progression and monocyte accumulation through mechanisms exerted by infiltrating immune cells. In the absence of CX₃CR1, intrahepatic monocytes develop preferentially into proinflammatory tumor necrosis factor-producing and inducible nitric oxide synthase-producing macrophages. CX₃CR1 represents an essential survival signal for hepatic monocyte-derived macrophages by activating antiapoptotic bcl2 expression. Monocytes/macrophages lacking CX₃CR1 undergo increased cell death after liver injury, which then perpetuates inflammation, promotes prolonged inflammatory monocyte infiltration into the liver, and results in enhanced liver fibrosis.


CX₃CR1 limits liver fibrosis in vivo by controlling the differentiation and survival of intrahepatic monocytes. The opposing regulation of CX₃CR1 and fractalkine in patients suggests that pharmacological augmentation of this pathway may represent a possible therapeutic antifibrotic strategy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center