Send to

Choose Destination
J Biomech. 2011 Feb 3;44(3):532-9. doi: 10.1016/j.jbiomech.2010.09.011. Epub 2010 Oct 28.

Pressure distribution over the palm region during forward falls on the outstretched hands.

Author information

Injury Prevention and Mobility Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.


Falls on the outstretched hands are the cause of over 90% of wrist fractures, yet little is known about bone loading during this event. We tested how the magnitude and distribution of pressure over the palm region during a forward fall is affected by foam padding (simulating a glove) and arm configuration, and by the faller's body mass index (BMI) and thickness of soft tissues over the palm region. Thirteen young women with high (n=7) or low (n=6) BMI participated in a "torso release experiment" that simulated falling on both outstretched hands with the arm inclined either at 20° or 40° from the vertical. Trials were acquired with and without a 5 mm thick foam pad secured to the palm. Outcome variables were the magnitude and location of peak pressure (d, θ) with respect to the scaphoid, total impact force, and integrated force applied to three concentric areas, including "danger zone" of 2.5 cm radius centered at the scaphoid. Soft tissue thickness over the palm was measured by ultrasound. The 5mm foam pad reduced peak pressure, and peak force to the danger zone, by 83% and 13%, respectively. Peak pressure was 77% higher in high BMI when compared with low BMI participants. Soft tissue thickness over the palm correlated positively with distance (d) (R=0.79, p=0.001) and force applied outside the danger zone (R=0.76, p=0.002), but did not correlate with BMI (R=0.43, p=0.14). The location of peak pressure was shunted 4 mm further from the scaphoid at 20° than that of 40° falls (d=25 mm (SD 8), θ=-9° (SD 17) in the 20° falls versus d=21 mm (SD 8), θ=-5° (SD 24) in the 40° falls). Peak force to the entire palm was 11% greater in 20° compared with 40° falls. These results indicate that even a 5 mm thick foam layer protects against wrist injury, by attenuating peak pressure over the palm during forward falls. Increased soft tissue thickness shunts force away from the scaphoid. However, soft tissue thickness is not predicted by BMI, and peak pressures are greater in high individuals than that of low BMI individuals. These results contribute to our understanding of the mechanics and prevention of wrist and hand injuries during falls.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center