Send to

Choose Destination
IEEE Trans Biomed Eng. 2011 Apr;58(4):927-34. doi: 10.1109/TBME.2010.2089521. Epub 2010 Oct 25.

HeLa cell transfection using a novel sonoporation system.

Author information

School of Electronics and Computer Science, University of Southampton, Southampton, SO171BJ, UK.


Sonoporation has been shown to have an important role in biotechnology for gene therapy and drug delivery. This paper presents a novel microfluidic sonoporation system that achieves high rates of cell transfection and cell viability by operating the sonoporation chamber at resonance. The paper presents a theoretical analysis of the resonant sonoporation chamber design, which achieves sonoporation by forming an ultrasonic standing wave across the chamber. A piezoelectric transducer (PZT 26) is used to generate the ultrasound and the different material thicknesses have been identified to give a chamber resonance at 980 kHz. The efficiency of the sonoporation system was determined experimentally under a range of sonoporation conditions and different exposures time (5, 10, 15, and 20 s, respectively) using HeLa cells and plasmid (peGFP-N1). The experimental results achieve a cell transfection efficiency of 68.9% (analysis of variance, ANOVA, p < 0.05) at the resonant frequency of 980 kHz at 100 V(p-p) (19.5 MPa) with a cell viability of 77% after 10 s of insonication.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center