Format

Send to

Choose Destination
See comment in PubMed Commons below
J Proteome Res. 2011 Jan 7;10(1):85-96. doi: 10.1021/pr100686b. Epub 2010 Nov 23.

Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer.

Author information

1
Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. kanderson@partners.org

Abstract

Cancer patients spontaneously generate autoantibodies (AAb) to tumor-derived proteins. To detect AAb, we have probed novel high-density custom protein microarrays (NAPPA) expressing 4988 candidate tumor antigens with sera from patients with early stage breast cancer (IBC), and bound IgG was measured. We used a three-phase serial screening approach. First, a prescreen was performed to eliminate uninformative antigens. Sera from stage I-III IBC (n = 53) and healthy women (n = 53) were screened for AAb to all 4988 protein antigens. Antigens were selected if the 95th percentile of signal of cases and controls were significantly different (p < 0.05) and if the number of cases with signals above the 95th percentile of controls was significant (p < 0.05). These 761 antigens were screened using an independent set of IBC sera (n = 51) and sera from women with benign breast disease (BBD) (n = 39). From these, 119 antigens had a partial area under the ROC curve (p < 0.05), with sensitivities ranging from 9-40% at >91% specificity. Twenty-eight of these antigens were confirmed using an independent serum cohort (n = 51 cases/38 controls, p < 0.05). Using all 28 AAb, a classifier was identified with a sensitivity of 80.8% and a specificity of 61.6% (AUC = 0.756). These are potential biomarkers for the early detection of breast cancer.

PMID:
20977275
PMCID:
PMC3158028
DOI:
10.1021/pr100686b
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center