Send to

Choose Destination
J Med Chem. 2010 Nov 25;53(22):8176-86. doi: 10.1021/jm101073q. Epub 2010 Oct 26.

Bicyclic substituted hydroxyphenylmethanones as novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases.

Author information

Pharmaceutical and Medicinal Chemistry, Saarland University, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C23, D-66123 Saarbrücken, Germany.


Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in the target cell is regulated by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), which catalyzes E2-formation by reduction of the weak estrogen estrone (E1). Because the enzyme is expressed in the diseased tissues, inhibition of 17β-HSD1 is considered as a promising therapy for the treatment of estrogen-dependent diseases. For the development of novel inhibitors, a structure- and ligand-based design strategy was applied, resulting in bicyclic substituted hydroxyphenylmethanones. In vitro testing revealed high inhibitory potencies toward human placental 17β-HSD1. Compounds were further evaluated with regard to selectivity (17β-HSD2, estrogen receptors ERα and ERβ), intracellular activity (T47D cells), and metabolic stability. The most promising compounds, 14 and 15, showed IC(50) values in the low nanomolar range in the cell-free and cellular assays (8-27 nM), more than 30-fold selectivity toward 17β-HSD2 and no affinity toward the ERs. The data obtained make these inhibitors interesting candidates for further preclinical evaluation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center