Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19157-62. doi: 10.1073/pnas.1009181107. Epub 2010 Oct 25.

Electron tunneling in respiratory complex I.

Author information

1
Department of Chemistry, University of California, Davis, CA 95616, USA.

Abstract

NADH:ubiquinone oxidoreductase (complex I) plays a central role in the respiratory electron transport chain by coupling the transfer of electrons from NADH to ubiquinone to the creation of the proton gradient across the membrane necessary for ATP synthesis. Here the atomistic details of electronic wiring of all Fe/S clusters in complex I are revealed by using the tunneling current theory and computer simulations; both density functional theory and semiempirical electronic structure methods were used to examine antiferromagnetically coupled spin states and corresponding tunneling wave functions. Distinct electron tunneling pathways between neighboring Fe/S clusters are identified; the pathways primarily consist of two cysteine ligands and one additional key residue. Internal water between protein subunits is identified as an essential mediator enhancing the overall electron transfer rate by almost three orders of magnitude to achieve a physiologically significant value. The identified key residues are further characterized by sensitivity of electron transfer rates to their mutations, examined in simulations, and their conservation among complex I homologues. The unusual electronic structure properties of Fe(4)S(4) clusters in complex I explain their remarkable efficiency of electron transfer.

PMID:
20974925
PMCID:
PMC2984193
DOI:
10.1073/pnas.1009181107
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center