Format

Send to

Choose Destination
J Neurosci Methods. 2011 Jan 15;194(2):242-51. doi: 10.1016/j.jneumeth.2010.10.015. Epub 2010 Oct 23.

Mini-coil for magnetic stimulation in the behaving primate.

Author information

1
Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.

Abstract

Transcranial magnetic stimulation (TMS) is rapidly becoming a leading method in both cognitive neuroscience and clinical neurology. However, the cellular and network level effects of stimulation are still unclear and their study relies heavily on indirect physiological measurements in humans. Direct electrophysiological studies of the effect of magnetic stimulation on neuronal activity in behaving animals are severely limited by both the size of the stimulating coils, which affect large regions of the animal brain, and the large artifacts generated on the recording electrodes. We present a novel mini-coil which is specifically aimed at studying the neurophysiological mechanism of magnetic stimulation in behaving primates. The mini-coil fits into a chronic recording chamber and provides focal activation of brain areas while enabling simultaneous extracellular multi-electrode recordings. We present a comparison of this coil to a commercial coil based on the theoretical and recorded magnetic fields and induced electric fields they generate. Subsequently, we present the signal recorded in the behaving primate during stimulation and demonstrate the ability to extract the spike trains of multiple single units from each of the electrodes with minimal periods affected by the stimulus artifact (median period <2.5 ms). The directly recorded effect of the magnetic stimulation on cortical neurons is in line with peripheral recordings obtained in humans. This novel mini-coil is a key part of the infrastructure for studying the neurophysiological basis of magnetic stimulation, thereby enabling the development and testing of better magnetic stimulation tools and protocols for both neuroscientists and clinicians.

PMID:
20974177
DOI:
10.1016/j.jneumeth.2010.10.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center