Format

Send to

Choose Destination
See comment in PubMed Commons below
Bone. 2011 Mar 1;48(3):647-53. doi: 10.1016/j.bone.2010.10.165. Epub 2010 Oct 20.

Linkage mapping of principal components for femoral biomechanical performance in a reciprocal HCB-8 × HCB-23 intercross.

Author information

1
Cellular and Molecular Biology Program, University of Wisconsin, Madison, WI, USA.

Abstract

Studies of bone genetics have addressed an array of related phenotypes, including various measures of biomechanical performance, bone size, bone, shape, and bone mineral density. These phenotypes are not independent, resulting in redundancy of the information they provide. Principal component (PC) analysis transforms multiple phenotype data to a new set of orthogonal "synthetic" phenotypes. We performed PC analysis on 17 femoral biomechanical, anatomic, and body size phenotypes in a reciprocal intercross of HcB-8 and HcB-23, accounting for 80% of the variance in 4 PCs. Three of the 4 PCs were mapped in the cross. The linkage analysis revealed a quantitative trait locus (QTL) with LOD = 4.7 for PC2 at 16 cM on chromosome 19 that was not detected using the directly measured phenotypes. The chromosome 19 QTL falls within a ~10 megabase interval, with Osf1 as a positional candidate gene. PC QTLs were also found on chromosomes 1, 2, 4, 6, and 10 that coincided with those identified for directly measured or calculated material property phenotypes. The novel chromosome 19 QTL illustrates the power advantage that attends use of PC phenotypes for linkage mapping. Constraint of the chromosome 19 candidate interval illustrates an important advantage of experimental crosses between recombinant congenic mouse strains.

PMID:
20969983
PMCID:
PMC3073517
DOI:
10.1016/j.bone.2010.10.165
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center