Format

Send to

Choose Destination
See comment in PubMed Commons below
J Alzheimers Dis. 2011;23(2):207-19. doi: 10.3233/JAD-2010-101377.

A novel perspective for Alzheimer's disease: vitamin D receptor suppression by amyloid-β and preventing the amyloid-β induced alterations by vitamin D in cortical neurons.

Author information

1
Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey. erdincdu@hotmail.com

Abstract

Amyloid-β (Aβ) is the core component of amyloid plaques of Alzheimer's disease (AD). The effects of Aβ include damage to neuronal plasma membrane, disruption of Ca(2+) homeostasis, and alterations of neurotrophic factor levels. The aim of this study was to determine the effects of Aβ treatment on vitamin D receptor (VDR), L-type voltage sensitive calcium channels A1C (LVSCC A1C), NGF, and observing the effects of vitamin D treatment on Aβ induced alterations in primary cortical neurons. As to the latter, we aimed to test the suggested neuroprotective role of vitamin D as a neglected neurosteroid. The expressions of VDR and LVSCC A1C were studied with qRT-PCR and Western blotting. NGF and cytotoxicity levels were determined by ELISA. Apoptotic cell death was investigated with caspase-3 protein expression by Western blotting. Our results showed that the Aβ triggers neurodegeneration not only by inducing LVSCC A1C expression and NGF levels and but also by dramatically suppressing VDR expression. Administration of vitamin D to this model protected neurons by preventing cytotoxicity and apoptosis, and also by downregulating LVSCC A1C and upregulating VDR. Additionally, vitamin D brought NGF expression to a state of equilibrium and did not show its apoptosis inducing effects. Consequently, prevention of Aβ toxicity which was one of the major component of AD type pathology by vitamin D treatment and understanding how Aβ effects vitamin D related pathways, might open up new frontiers in clarifying molecular mechanisms of neurodegeneration and provide basis for novel perspectives in both preventing and treating AD.

PMID:
20966550
DOI:
10.3233/JAD-2010-101377
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOS Press
    Loading ...
    Support Center