Reinvestigation of the M(II) (M = Ni, Co)/tetrathiafulvalenetetracarboxylate system using high-throughput methods: isolation of a molecular complex and its single-crystal-to-single-crystal transformation to a two-dimensional coordination polymer

Inorg Chem. 2010 Nov 15;49(22):10710-7. doi: 10.1021/ic101906u. Epub 2010 Oct 22.

Abstract

A high-throughput methodology combined with X-ray powder diffraction measurements was used to investigate the reactivity of the TetraThiaFulvalene TetraCarboxylic acid ((TTF-TC)H(4)) with divalent metals (M = Ni, Co) under various reaction conditions (stoichiometry, pH, temperature). Two new crystalline phases were identified and then studied by single crystal X-ray diffraction. Whereas the first one appears to be a simple salt, the second one, formulated {[M(H(2)O)(4)](2)(TTF-TC)}·4H(2)O, is built of 2:1 M:TTF-TC molecular complexes and labeled MIL-136(Ni, Co) (MIL stands for Materials Institute Lavoisier). The combination of thermogravimetric analysis and thermodiffraction studies reveals that MIL-136(Ni) exhibits a complex dehydration behavior. Indeed, a partial dehydration/rehydration process led to the single-crystal-to-single-crystal transformation of the molecular compound in a two-dimensional coordination polymer formulated {[Ni(2)(H(2)O)(5)(TTF-TC)]}·H(2)O (MIL-136'(Ni)). Magnetic and redox properties of MIL-136(Ni, Co) were investigated. Magnetic measurements indicate that all the magnetic coupling, intra- and intermolecular, are very weak; thus, the magnetic data of MIL-136(Ni, Co) have been interpreted in term of single-ion spin orbit coupling. Solid state cyclic voltammetry of MIL-136(Ni, Co) presents three reversible waves which were assigned to the redox activity of the TTF core and the metallic cations. In contrast to solids based on TTF linkers and alkaline ions, the MIL-136(Ni, Co) complexes do not act as excellent positive electrode materials for Li batteries, but present two reversible electron oxidation of the TTF core. These observations were tentatively related to the strength of the metal-carboxylate bond.