Send to

Choose Destination
Virol J. 2010 Oct 15;7:271. doi: 10.1186/1743-422X-7-271.

Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells.

Author information

Univ Paris-sud 11, CNRS-UMR 8126 and Institut de Cancérologie Gustave Roussy, 39 rue Camille Desmoulins, Villejuif, France.



Nasopharyngeal carcinoma (NPC) is a human epithelial malignancy consistently associated with the Epstein-Barr virus. The viral genome is contained in the nuclei of all malignant cells with abundant transcription of a family of viral microRNAs called BART miRNAs. MicroRNAs are well known intra-cellular regulatory elements of gene expression. In addition, they are often exported in the extra-cellular space and sometimes transferred in recipient cells distinct from the producer cells. Extra-cellular transport of the microRNAs is facilitated by various processes including association with protective proteins and packaging in secreted nanovesicles called exosomes. Presence of microRNAS produced by malignant cells has been reported in the blood and saliva of tumor-bearing patients, especially patients diagnosed with glioblastoma or ovarian carcinoma. In this context, it was decided to investigate extra-cellular release of BART miRNAs by NPC cells and their possible detection in the blood of NPC patients. To address this question, we investigated by quantitative RT-PCR the status of 5 microRNAs from the BART family in exosomes released by NPC cells in vitro as well as in plasma samples from NPC xenografted nude mice and NPC patients.


We report that the BART miRNAs are released in the extra-cellular space by NPC cells being associated, at least to a large extent, with secreted exosomes. They are detected with a good selectivity in plasma samples from NPC xenografted nude mice as well as NPC patients.


Viral BART miRNAs are secreted by NPC cells in vitro and in vivo. They have enough stability to diffuse from the tumor site to the peripheral blood. This study provides a basis to explore their potential as a source of novel tumor biomarkers and their possible role in communications between malignant and non-malignant cells.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center