Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2010 Dec;115(6):1556-67. doi: 10.1111/j.1471-4159.2010.07062.x. Epub 2010 Nov 19.

Reduced proteasomal activity contributes to the accumulation of carbonylated proteins in chronic experimental autoimmune encephalomyelitis.

Author information

1
Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico, USA.

Abstract

We have recently shown that several carbonylated proteins, including glial fibrillary acidic protein, β-actin and β-tubulin, accumulate within cerebellar astrocytes during the chronic phase of myelin-oligodendrocyte glycoprotein (MOG)(35-55) peptide-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. As protein carbonyls cannot be repaired and there is less oxidative stress in chronic than in acute EAE, we hypothesized that the accumulation of carbonylated proteins in these animals may be due to a defect in the degradation of the modified proteins. Alternatively, oxidized proteins in chronic EAE mice may be more resistant to proteolysis. Using lipopolysaccharide-stimulated astrocytes and several protease inhibitors we identified the 20S proteasome as the proteolytic system responsible for the elimination of most oxidized proteins. We also discovered that the chymotrysin-like and caspase-like activities of the 20S proteasome are impaired in chronic EAE, while the amount of proteasome was unchanged. Proteasome failure in these animals was confirmed by the build-up of ubiquitinated proteins, mostly within astrocytes. In a cell-free system, carbonylated proteins from EAE mice with acute and chronic disease seem to be equally sensitive to proteasomal degradation. Altogether, the results support the notion that diminished activity of the 20S proteasome is a major contributor to the accumulation of carbonylated proteins in astrocytes of chronic EAE mice.

PMID:
20950414
PMCID:
PMC2996488
DOI:
10.1111/j.1471-4159.2010.07062.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center