Send to

Choose Destination
Pflugers Arch. 2011 Jan;461(1):141-52. doi: 10.1007/s00424-010-0889-y. Epub 2010 Oct 14.

Propionate-induced epithelial K(+) and Cl(-)/HCO3(-) secretion and free fatty acid receptor 2 (FFA2, GPR43) expression in the guinea pig distal colon.

Author information

Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan.


Propionate, a fermented product in the lumen of the large intestine, is a short-chain fatty acid (SCFA) known to have a variety of localized physiological and pathophysiological functions (e.g., luminal fluid secretion and anti-inflammatory response). In the present study, we investigated propionate-induced transepithelial ion transport and the expression of SCFA receptor, free fatty acid receptor 2 (FFA2, otherwise known as GPR43) in the guinea pig distal colon utilizing the Ussing chamber technique and immunohistochemistry. The addition of propionate to the luminal bathing solution concentration-dependently induced transient K(+) and Cl(-) and/or bicarbonate secretion within approximately 30 s and long-lasting Cl(-) secretion for approximately 60 min was first identified in the present study. The transient anion secretion was tetrodotoxin (TTX)-sensitive and mediated through the cholinergic (both nicotinic and muscarinic) neural pathway, but the transient K(+) and long-lasting Cl(-) secretion were due to TTX-insensitive mechanism. Immunohistochemistry studies showed that some chromogranin A-immunoreactive enteroendocrine cells were also immunoreactive for FFA2 but not colocalized with 5-hydroxytryptamine. In conclusion, the propionate-induced secretion consisted of the neural and non-neural three-phase secretory manner possibly mediated by the stimulation of FFA2 expressed by enteroendocrine cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center