Send to

Choose Destination
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19026-31. doi: 10.1073/pnas.1013866107. Epub 2010 Oct 11.

Constitutively active H-ras accelerates multiple forms of plasticity in developing visual cortex.

Author information

Department of Physiology and the Keck Center for Integrative Neurosciences, University of California, San Francisco, CA 94143-0444, USA.


Experience-dependent cortical plasticity has been studied by using loss-of-function methods. Here, we take the complementary approach of using a genetic gain-of-function that enhances plasticity. We show that a constitutively active form of H-ras (H-ras(G12V)), expressed presynaptically at excitatory synapses in mice, accelerates and enhances multiple, mechanistically distinct forms of plasticity in the developing visual cortex. In vivo, H-ras(G12V) not only increased the rate of ocular dominance change in response to monocular deprivation (MD), but also accelerated recovery from deprivation by reverse occlusion. In vitro, H-ras(G12V) expression decreased baseline presynaptic release probability and enhanced presynaptically expressed long-term potentiation (LTP). H-ras(G12V) expression also accelerated the increase following MD in the frequency of miniature excitatory potentials, mirroring accelerated plasticity in vivo. These findings demonstrate accelerated neocortical plasticity, which offers an avenue toward future therapies for many neurological and neuropsychiatric disorders.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center