Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19026-31. doi: 10.1073/pnas.1013866107. Epub 2010 Oct 11.

Constitutively active H-ras accelerates multiple forms of plasticity in developing visual cortex.

Author information

1
Department of Physiology and the Keck Center for Integrative Neurosciences, University of California, San Francisco, CA 94143-0444, USA.

Abstract

Experience-dependent cortical plasticity has been studied by using loss-of-function methods. Here, we take the complementary approach of using a genetic gain-of-function that enhances plasticity. We show that a constitutively active form of H-ras (H-ras(G12V)), expressed presynaptically at excitatory synapses in mice, accelerates and enhances multiple, mechanistically distinct forms of plasticity in the developing visual cortex. In vivo, H-ras(G12V) not only increased the rate of ocular dominance change in response to monocular deprivation (MD), but also accelerated recovery from deprivation by reverse occlusion. In vitro, H-ras(G12V) expression decreased baseline presynaptic release probability and enhanced presynaptically expressed long-term potentiation (LTP). H-ras(G12V) expression also accelerated the increase following MD in the frequency of miniature excitatory potentials, mirroring accelerated plasticity in vivo. These findings demonstrate accelerated neocortical plasticity, which offers an avenue toward future therapies for many neurological and neuropsychiatric disorders.

PMID:
20937865
PMCID:
PMC2973899
DOI:
10.1073/pnas.1013866107
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center