Full vectorial simulation of multilayer anisotropic waveguides with an accurate and automated finite-element program

Appl Opt. 1994 Aug 20;33(24):5650-6. doi: 10.1364/AO.33.005650.

Abstract

An efficient, accurate, and automated vectorial finite-element software package (named WAVEGIDE), which is implemented within a PDE/Protran problem-solving environment, has been extended to general multilayer anisotropic waveguides. With our system, through an interactive question-and-answer session, the problem can be simply defined with high-level PDE/Protran commands. The problem can then be solved easily and quickly by the main processor within this intelligent environment. In particular, in our system the eigenvalue of waveguide problems may be either a propagation constant (β) or an operated light frequency (F). Furthermore, the cutoff frequencies of propagation modes in waveguides can be calculated. As an application of this approach, numerical results for both scalar and hybrid modes in multilayer anisotropic waveguides are presented and are also compared with results obtained with the domain-integral method. These results clearly illustrate the unique flexibility, accuracy, and the ease of use f the WAVEGIDE program.