Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2011 Jan;32(1):176-84. doi: 10.1016/j.biomaterials.2010.09.039.

Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging.

Author information

1
Department of Biological Sciences and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.

Abstract

Multifunctional hollow manganese oxide nanoparticles (HMON) were produced by a bio-inspired surface functionalization approach, using 3,4-dihydroxy-L-phenylalanine (DOPA) as an adhesive moiety, for cancer targeted delivery of therapeutic siRNA and simultaneous diagnosis via magnetic resonance imaging (MRI). Cationic polyethylenimine-DOPA conjugates were stably immobilized onto the surface of HMON due to the strong binding affinity of DOPA to metal oxides, as examined by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. These nanoparticles were subsequently functionalized with a therapeutic monoclonal antibody, Herceptin, to selectively target cancer cells. Confocal microscopy and MR imaging studies revealed that the surface functionalized HMON enabled the targeted detection of cancer cells in T(1)-weighted MRI as well as the efficient intracellular delivery of siRNA for cell-specific gene silencing. These nanomaterials are expected to be widely exploited as multifunctional delivery vehicles for cancer therapy and imaging applications.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center