(A) The evolution of the end-to-end distance of the trajectories from the initial state. The trajectory at Vtarget = 0.6 Å/ps (cyan trace) is trapped in the folded state. At Vtarget = 0.8 Å/ps (red trace), the system is trapped in an unfolding intermediate. At higher velocities (green trace, Vtarget = 1.4 Å/ps), the system works through a kinetic barrier before unfolding without impedance. The following snapshots show the key backbone hydrogen bonds between β-strand-A (green sticks), β-strand-G (purple sticks) and β-strand-B (blue sticks). (B) The last snapshot of the trapped trajectory (cyan trace, Vtarget = 0.6 Å/ps), with hydrogen bonds intact between β-strands-A, B – G. (C) The last snapshot from the trajectory trapped in the unfolding intermediate (red trace, Vtarget = 0.8 Å/ps) where the hydrogen-bonds between β-strand-A' and B are broken. The following snapshots are from a trajectory that unfolds through the kinetic barrier (green trace, Vtarget = 1.4 Å/ps): (D) three hydrogen-bonds between β-strand-A and G are broken; (E) all hydrogen bonds between β-strand-A and G are broken; and (F) the protein can now unfold without kinetic barriers at a constant velocity.