Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2011 Jan;336(1):254-64. doi: 10.1124/jpet.110.173112. Epub 2010 Oct 5.

Functional plasticity of group II metabotropic glutamate receptors in regulating spinal excitatory and inhibitory synaptic input in neuropathic pain.

Author information

  • 1Department of Anesthesiology and Perioperative Medicine, Unit 110, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.


Metabotropic glutamate receptors (mGluRs) are involved in the modulation of synaptic transmission and plasticity. Group II mGluRs in the spinal cord regulate glutamatergic input, but their functional changes in neuropathic pain are not clear. In this study, we determined the plasticity of spinal group II mGluRs in controlling excitatory and inhibitory synaptic transmission and nociception in neuropathic pain. Neuropathic pain was induced by spinal nerve ligation in rats, and whole-cell voltage-clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) and spontaneous and miniature GABAergic and glycinergic inhibitory postsynaptic currents (sIPSCs and mIPSCs, respectively) were performed in spinal cord slices. The specific group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) had a similar inhibitory effect on monosynaptic EPSCs evoked from the dorsal root in sham and nerve-injured rats. However, DCG-IV produced a greater inhibitory effect on evoked polysynaptic EPSCs and the frequency of spontaneous EPSCs in nerve-injured rats than in control rats. Although DCG-IV similarly reduced the frequency of GABAergic sIPSCs and mIPSCs in both groups, it distinctly inhibited the frequency of glycinergic sIPSCs and mIPSCs only in nerve-injured rats. The DCG-IV effect was blocked by the group II mGluR antagonist but not by the N-methyl-D-aspartate receptor antagonist. Strikingly, intrathecal injection of DCG-IV dose-dependently attenuated allodynia and hyperalgesia in nerve-injured rats but produced hyperalgesia in control rats. Our study provides new information that nerve injury up-regulates group II mGluRs present on glutamatergic and glycinergic interneurons in the spinal cord. Activation of group II mGluRs reduces neuropathic pain probably by attenuating glutamatergic and glycinergic input to spinal dorsal horn neurons.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center