Format

Send to

Choose Destination
Nat Med. 2010 Oct;16(10):1147-51. doi: 10.1038/nm.2232. Epub 2010 Oct 3.

Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF.

Author information

1
Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

CD8(+) T cells in chronic viral infections such as HIV develop functional defects including loss of interleukin-2 (IL-2) secretion and decreased proliferative potential that are collectively termed 'exhaustion'. Exhausted T cells express increased amounts of multiple inhibitory receptors, such as programmed death-1 (PD-1), that contribute to impaired virus-specific T cell function. Although reversing PD-1 inhibition is therefore an attractive therapeutic strategy, the cellular mechanisms by which PD-1 ligation results in T cell inhibition are not fully understood. PD-1 is thought to limit T cell activation by attenuating T cell receptor (TCR) signaling. It is not known whether PD-1 also acts by upregulating genes in exhausted T cells that impair their function. Here we analyzed gene expression profiles from HIV-specific CD8(+) T cells in individuals with HIV and show that PD-1 coordinately upregulates a program of genes in exhausted CD8(+) T cells from humans and mice. This program includes upregulation of basic leucine transcription factor, ATF-like (BATF), a transcription factor in the AP-1 family. Enforced expression of BATF was sufficient to impair T cell proliferation and cytokine secretion, whereas BATF knockdown reduced PD-1 inhibition. Silencing BATF in T cells from individuals with chronic viremia rescued HIV-specific T cell function. Thus, inhibitory receptors can cause T cell exhaustion by upregulating genes--such as BATF--that inhibit T cell function. Such genes may provide new therapeutic opportunities to improve T cell immunity to HIV.

Comment in

PMID:
20890291
PMCID:
PMC3326577
DOI:
10.1038/nm.2232
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center