Send to

Choose Destination
Diabetes Obes Metab. 2010 Nov;12(11):1004-12. doi: 10.1111/j.1463-1326.2010.01291.x.

The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats.

Author information

CVGI Discovery, AstraZeneca, Alderley Park, Macclesfield, Cheshire, UK.



To investigate whether glucose lowering with the selective sodium glucose transporter 2 (SGLT2) inhibitor dapagliflozin would prevent or reduce the decline of pancreatic function and disruption of normal islet morphology.


Female Zucker diabetic fatty (ZDF) rats, 7-8 weeks old, were placed on high-fat diet. Dapagliflozin (1 mg/kg/day, p.o.) was administered for ∼33 days either from initiation of high-fat diet or when rats were moderately hyperglycaemic. Insulin sensitivity and pancreatic function were evaluated using a hyperglycaemic clamp in anaesthetized animals (n = 5-6); β-cell function was quantified using the disposition index (DI) to account for insulin resistance compensation. Pancreata from a matched subgroup (n = 7-8) were fixed and β-cell mass and islet morphology investigated using immunohistochemical methods.


Dapagliflozin, administered from initiation of high-fat feeding, reduced the development of hyperglycaemia; after 24 days, blood glucose was 8.6 ± 0.5 vs. 13.3 ± 1.3 mmol/l (p < 0.005 vs. vehicle) and glycated haemoglobin 3.6 ± 0.1 vs. 4.8 ± 0.26% (p < 0.003 vs. vehicle). Dapagliflozin improved insulin sensitivity index: 0.08 ± 0.01 vs. 0.02 ± 0.01 in obese controls (p < 0.03). DI was improved to the level of lean control rats (dapagliflozin 0.29 ± 0.04; obese control 0.15 ± 0.01; lean 0.28 ± 0.01). In dapagliflozin-treated rats, β-cell mass was less variable and significant improvement in islet morphology was observed compared to vehicle-treated rats, although there was no change in mean β-cell mass with dapagliflozin. Results were similar when dapagliflozin treatment was initiated when animals were already moderately hyperglycaemic.


Sustained glucose lowering with dapagliflozin in this model of type 2 diabetes prevented the continued decline in functional adaptation of pancreatic β-cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center