Format

Send to

Choose Destination
Traffic. 2010 Dec;11(12):1552-66. doi: 10.1111/j.1600-0854.2010.01123.x. Epub 2010 Oct 15.

Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport.

Author information

1
Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan.

Abstract

The coiled-coil Golgi membrane protein golgin-84 functions as a tethering factor for coat protein I (COPI) vesicles. Protein interaction analyses have revealed that golgin-84 interacts with another tether, the conserved oligomeric Golgi (COG) complex, through its subunit Cog7. Therefore, we explored the function of golgin-84 as the tether for COPI vesicles of intra-Golgi retrograde traffic. First, glycosylic maturation of both plasma membrane (CD44) and lysosomal (lamp1) glycoproteins was distorted in golgin-84 knockdown (KD) cells. The depletion of golgin-84 caused fragmentation of the Golgi with the mislocalization of Golgi resident proteins, resulting in the accumulation of vesicles carrying intra-Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and cis-Golgi membrane protein GPP130. Similar observations were obtained by diminution of the COG complex, suggesting a strong correlation between the two tethers. Indeed, COG complex-dependent (CCD) vesicles that accumulate in Cog3 or Cog7 KD cells carried golgin-84. Surprisingly, the interaction between golgin-84 and another candidate tethering partner CASP (CDP/cut alternatively spliced product) decreased in Cog3 KD cells. These results indicate that golgin-84 on COPI vesicles interact with the COG complex before SNARE assembly, suggesting that the interaction of golgin-84 with COG plays an important role in the tethering process of intra-Golgi retrograde vesicle traffic.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center