Send to

Choose Destination
Magn Reson Med. 2011 Jan;65(1):239-49. doi: 10.1002/mrm.22597.

Indirectly probing Ca(2+) handling alterations following myocardial infarction in a murine model using T(1)-mapping manganese-enhanced magnetic resonance imaging.

Author information

Small Animal Imaging, Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912, USA.


Prolonged ischemia causes cellular necrosis and myocardial infarction (MI) via intracellular calcium (Ca(2+)) overload. Manganese-enhanced MRI indirectly assesses Ca(2+) influx movement in vivo as manganese (Mn(2+)) is a Ca(2+) analog. To characterize myocardial Mn(2+) efflux properties, T(1)-mapping manganese-enhanced MRI studies were performed on adult male C57Bl/6 mice in which Ca(2+) efflux was altered using pharmacological intervention agents or MI-inducing surgery. Results showed that (1) Mn(2+) efflux rate increased exponentially with increasing Mn(2+) doses; (2) SEA0400 (a sodium-calcium exchanger inhibitor) decreased the rate of Mn(2+) efflux; and (3) dobutamine (a positive inotropic agent) increased the Mn(2+) efflux rate. A novel analysis technique also delineated regional features in the MI mice, which showed an increased Mn(2+) efflux rate in the necrosed and peri-infarcted tissue zones. The T(1)-mapping manganese-enhanced MRI technique characterized alterations in myocardial Mn(2+) efflux rates following both pharmacologic intervention and an acute MI. The Mn(2+) efflux results were consistent with those in ex vivo studies showing an increased Ca(2+) concentration under similar conditions. Thus, T(1)-mapping manganese-enhanced MRI has the potential to indirectly identify and quantify intracellular Ca(2+) handling in the peri-infarcted tissue zones, which may reveal salvageable tissue in the post-MI myocardium.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center