Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci Methods. 2010 Nov 30;193(2):281-7. doi: 10.1016/j.jneumeth.2010.09.007. Epub 2010 Sep 24.

Difference Tracker: ImageJ plugins for fully automated analysis of multiple axonal transport parameters.

Author information

1
Bioinformatics Group, The Babraham Institute, Babraham, Cambridge, UK.

Abstract

Studies of axonal transport are critical, not only to understand its normal regulation, but also to determine the roles of transport impairment in disease. Exciting new resources have recently become available allowing live imaging of axonal transport in physiologically relevant settings, such as mammalian nerves. Thus the effects of disease, ageing and therapies can now be assessed directly in nervous system tissue. However, these imaging studies present new challenges. Manual or semi-automated analysis of the range of transport parameters required for a suitably complete evaluation is very time-consuming and can be subjective due to the complexity of the particle movements in axons in ex vivo explants or in vivo. We have developed Difference Tracker, a program combining two new plugins for the ImageJ image-analysis freeware, to provide fast, fully automated and objective analysis of a number of relevant measures of trafficking of fluorescently labeled particles so that axonal transport in different situations can be easily compared. We confirm that Difference Tracker can accurately track moving particles in highly simplified, artificial simulations. It can also identify and track multiple motile fluorescently labeled mitochondria simultaneously in time-lapse image stacks from live imaging of tibial nerve axons, reporting values for a number of parameters that are comparable to those obtained through manual analysis of the same axons. Difference Tracker therefore represents a useful free resource for the comparative analysis of axonal transport under different conditions, and could potentially be used and developed further in many other studies requiring quantification of particle movements.

PMID:
20869987
DOI:
10.1016/j.jneumeth.2010.09.007
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center