Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films

Phys Rev Lett. 2010 Sep 17;105(12):127403. doi: 10.1103/PhysRevLett.105.127403. Epub 2010 Sep 15.

Abstract

We report substantially enhanced photoluminescence (PL) from hybrid structures of graphene/ZnO films at a band gap energy of ZnO (∼3.3 eV/376 nm). Despite the well-known constant optical conductivity of graphene in the visible-frequency regime, its abnormally strong absorption in the violet-frequency region has recently been reported. In this Letter, we demonstrate that the resonant excitation of graphene plasmon is responsible for such absorption and eventually contributes to enhanced photoemission from structures of graphene/ZnO films when the corrugation of the ZnO surface modulates photons emitted from ZnO to fulfill the dispersion relation of graphene plasmon. These arguments are strongly supported by PL enhancements depending on the spacer thickness, measurement temperature, and annealing temperature, and the micro-PL mapping images obtained from separate graphene layers on ZnO films.