Format

Send to

Choose Destination
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056102. Epub 2010 May 4.

Model for rumor spreading over networks.

Author information

1
Macedonian Academy for Sciences and Arts, Skopje, Macedonia.

Abstract

An alternate model for rumor spreading over networks is suggested, in which two rumors (termed rumor 1 and rumor 2) with different probabilities of acceptance may propagate among nodes. The propagation is not symmetric in the sense that when deciding which rumor to adopt, nodes always consider rumor 1 first. The model is a natural generalization of the well-known epidemic SIS (susceptible-infective-susceptible) model and reduces to it when some of the parameters of this model are zero. We find that preferred rumor 1 is dominant in the network when the degree of nodes is high enough and/or when the network contains large clustered groups of nodes, expelling rumor 2. However, numerical simulations on synthetic networks show that it is possible for rumor 2 to occupy a nonzero fraction of the nodes in many cases as well. Specifically, in the Watts-Strogatz small-world model a moderate level of clustering supports its adoption, while increasing randomness reduces it. For Erdos-Renyi networks, a low average degree allows the coexistence of the two types of rumors. In Barabasi-Albert networks generated with a low m , where m is the number of links when a new node is added, it is also possible for rumor 2 to spread over the network.

PMID:
20866292
DOI:
10.1103/PhysRevE.81.056102

Supplemental Content

Loading ...
Support Center