Send to

Choose Destination
Glycobiology. 2011 Jan;21(1):6-12. doi: 10.1093/glycob/cwq144. Epub 2010 Sep 23.

Galectin multimerization and lattice formation are regulated by linker region structure.

Author information

Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA.

Erratum in

  • Glycobiology. 2011 Mar;21(3):398.


Galectins regulate cellular functions by binding to glycan ligands on cell surface glycoprotein receptors. Prototype galectins, such as galectin-1, are one carbohydrate recognition domain (CRD) monomers that noncovalently dimerize, whereas tandem-repeat galectins, such as galectin-9, have two non-identical CRDs connected by a linker domain. Dimerization of prototype galectins, or both CRDs in tandem-repeat galectins, is typically required for the crosslinking of glycoprotein receptors and subsequent cellular signaling. Several studies have found that tandem-repeat galectins are more potent than prototype galectins in triggering many cell responses, including cell death. These differences could be due to CRD specificity, the presence or absence of a linker domain between CRDs, or both. To interrogate the basis for the increased potency of tandem-repeat galectins compared with prototype galectins in triggering cell death, we created three tandem-repeat galectin constructs with different linker regions joining identical galectin-1 CRDs, so that any differences we observed would be due to the contribution of the linker region rather than due to CRD specificity. We found that random-coil or rigid α-helical linkers that permit separation of the two galectin-1 CRDs facilitated the formation of higher-order galectin multimers and that these galectins were more potent in binding to glycan ligands and cell surface glycoprotein receptors, as well as triggering T cell death, compared with native galectin-1 or a construct with a short rigid linker. Thus, the increased potency of tandem-repeat galectins compared with prototype galectins is likely due to the ability of the linker domain to permit intermolecular CRD interactions, resulting in the formation of higher-order multimers with increased valency, rather than differences in CRD specificity.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center