Send to

Choose Destination
See comment in PubMed Commons below
Nat Cell Biol. 2010 Oct;12(10):954-62. doi: 10.1038/ncb2097. Epub 2010 Sep 19.

Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway.

Author information

  • 1Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA.


In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two mitogen-activated protein (MAP)-kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three functions for Dig1 that are non-redundant with those of Dig2. First, the removal of Dig1 results in a specific increase in intrinsic and extrinsic noise in the transcriptional outputs of the mating pathway. Second, in dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-type cells into discrete subnuclear foci. Third, genome-wide insertional chromatin immunoprecipitation studies revealed that Ste12-dependent genes have increased interchromosomal interactions in dig1Δ cells. These findings suggest that the regulation of gene expression through long-range gene interactions, a widely observed phenomenon, comes at the cost of increased noise. Consequently, cells may have evolved mechanisms to suppress noise by controlling these interactions.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center