Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Comp Immunol. 2011 Jan;35(1):125-34. doi: 10.1016/j.dci.2010.09.001. Epub 2010 Sep 19.

Zebrafish mast cells possess an FcɛRI-like receptor and participate in innate and adaptive immune responses.

Author information

1
IWK Health Centre, Dalhousie University, PO Box 9700, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.

Abstract

We previously identified a zebrafish mast cell (MC) lineage and now aim to determine if these cells function analogously in innate and adaptive immunity like their mammalian counterparts. Intraperitoneal (IP) injection of compound 48/80 or live Aeromonas salmonicida resulted in significant MC degranulation evident histologically and by increased plasma tryptase compared with saline-injected controls (p=0.0006, 0.005, respectively). Pre-treatment with ketotifen abrogated these responses (p=0.0004, 0.005, respectively). Cross-reactivity was observed in zebrafish to anti-human high-affinity IgE receptor gamma (FcɛRIγ) and IgE heavy chain-directed antibodies. Whole mount in situ hybridization on 7-day embryos demonstrated co-localization of cpa5, a MC-specific marker, with myd88, a toll-like receptor adaptor, and zebrafish FcɛRI subunit homologs. Zebrafish injected IP with matched dinitrophenyl-sensitized mouse (anti-DNP) IgE and DNP-BSA or trinitrophenyl-sensitized mouse (anti-TNP) IgE and TNP-BSA demonstrated increased plasma tryptase compared with mismatched controls (p=0.03, 0.010, respectively). These results confirm functional conservation and validate the zebrafish model as an in vivo screening tool for novel MC modulating agents.

PMID:
20849876
DOI:
10.1016/j.dci.2010.09.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center